In-Delta Storage Program
February 2004 Public Workshop

Engineering Design &
Risk Analysis

Jeremy Arrich, Senior Engineer
In-Delta Storage Section
California Department of Water Resources

Presentation Outline

- Objectives
- Proposed Facilities
 - Embankment Design
 - Erosion & Piping Protection
 - Seepage Control
 - Integrated Facilities
- Project Cost & Construction Schedule
- Risk Analysis
- Summary
Presentation Outline

- Objectives
- Proposed Facilities
 - Embankment Design
 - Erosion & Piping Protection
 - Seepage Control
 - Integrated Facilities
- Project Cost & Construction Schedule
- Risk Analysis
- Summary

Objectives of Engineering Design & Risk Analysis

- To determine the technical feasibility of the In-Delta Storage Project
- To ensure public safety and project reliability through…
 - Improved embankment design
 - Consolidation of inlet and outlet structures
Presentation Outline

- Engineering Investigations
- Proposed Facilities
 - Embankment Design
 - Erosion & Piping Protection
 - Seepage Control
 - Integrated Facilities
- Project Cost & Construction Schedule
- Risk Analysis
- Summary

Proposed Facilities

- Reservoir Island Embankments
- Integrated Facilities

Legend:
- Integrated Facility
- Habitat Island
- Reservoir Island
Reservoir Embankment Design

- **“Rock Berm” Option**
 - Construct new embankment on top of existing levee
 - 3H:1V Slough-side slope
 - Place Rock Fill on slough-side to meet stability criteria

- **“Bench” Option**
 - Bench created by removing a portion of existing levee to an elevation between 0 and 6 feet
 - Bench shifts new embankment towards reservoir
 - Erosion protection provided above bench elevation
Recommended Embankment Design

- Recommended design includes both Options
 - “Rock Berm” used around majority (96%) of reservoir islands
 - “Bench” configuration used where:
 - Slough is deep
 - Existing slope too steep to place rock
 - Placement of rock would block portion of channel
- Design based on safety and risk analysis requirements established by DWR and Reclamation
- DWR’s Independent Board of Consultants reviewed and approved this design

Webb Tract - Bench Option Locations
Bacon Island - Bench Option Locations

Erosion & Piping Protection

- **Erosion Protection** (from wind and wave action)
 - Riprap
 - upper portion of slough-side slope
 - reservoir-side slope from crest to elevation +3
 - Soil Cement
 - north and west facing 10:1 reservoir-side slopes (general prevailing wind and storm wind directions)

- **Piping Protection**
 - Geotextile Filter Fabric
 - reservoir-side slopes between existing levee and new embankment fill
 - 10:1 reservoir-side slopes
Seepage Control System

- **Without Seepage Control**
 - The proposed reservoir islands may increase seepage flows onto adjacent islands beyond the current rate.

- **With Seepage Control**
 - Crop damage and increased pumping costs on adjacent islands will be prevented.

- **Proposed Seepage Control**
 - Interceptor wells along reservoir embankment crest
 - Average Depth – 50 ft
 - Average Spacing – 160 to 200 ft apart
 - Average Pumping Rate – 6 to 8 gallons per minute
Webb Tract
Seepage Control Locations
Bacon Island
Seepage Control Locations

Integrated Facilities
(Diversion and Release Structures)

- **Purpose of Integrated Facilities**
 - To control diversions and releases from reservoirs
 - To combine all operational components into a single facility for more efficient operations

- **Operational Strategy**
 - To maximize gravity flow and minimize pumping to reduce operation and maintenance costs
Webb Tract Integrated Facilities

San Joaquin River Integrated Facility
Max Diversion: 2,250 cfs
Max Release: 1,500 cfs

False River Integrated Facility
Max Diversion: 2,250 cfs
Max Release: 1,500 cfs

Total Project Diversions and Releases
Diversions (all islands combined):
Total max day: 9,000 cfs*
Total max month: 4,000 cfs*
* Habitat Island diversions included
Releases (all islands combined):
Total max day: 6,000 cfs

Bacon Island Integrated Facilities

Middle River Integrated Facility
Max Diversion: 2,250 cfs
Max Release: 1,500 cfs

Santa Fe Cut Integrated Facility
Max Diversion: 2,250 cfs
Max Release: 1,500 cfs

Total Project Diversions and Releases
Diversions (all islands combined):
Total max day: 9,000 cfs*
Total max month: 4,000 cfs*
* Habitat Island diversions included
Releases (all islands combined):
Total max day: 6,000 cfs
Integrated Facility Components

Integrated Facility Components

Integrated Facility Diversion Flow Paths
Integrated Facility
Release Flow Paths

Integrated Facility
Diversion & Release Flow Paths
Key Features of Integrated Facility

- Integrated Facilities consolidate all controls for improved operation and maintenance
- Year-around diversions and releases are possible with gravity flow and pumping combinations
- State-of-the-Art Fish Screens similar to CCWD’s Old River Intake
- Conceptual design approved by CVFFRT

Presentation Outline

- Engineering Investigations
- Proposed Facilities
 - Embankment Design
 - Erosion & Piping Protection
 - Seepage Control
 - Integrated Facilities
- Project Cost & Construction Schedule
- Risk Analysis
- Summary
Project Cost Estimates

- Basis for Cost Estimates
 - Material quantities
 - Construction methods, task sequencing and construction duration
 - Market research to obtain unit costs for materials and cost of labor and equipment
 - Previous Investigations

Project Cost

- Total Project Cost: $774 Million
 - Includes
 - Base Construction Costs
 - Land Acquisition, Mitigation, Demolition, Relocations and Permits
 - Contingencies
 - Engineering Design
 - Construction Management
 - Legal
 - Administration
Project Cost Breakdown

- Costs shown include contingencies where applicable
- Other Items include: Land Acquisition, Mitigation, Demolition, Relocations and Permits

Project Construction Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering & Final Design</td>
<td>1</td>
</tr>
<tr>
<td>Bid & Award Process</td>
<td>2</td>
</tr>
<tr>
<td>Embankment Construction</td>
<td>3</td>
</tr>
<tr>
<td>(Including Piping Protection & Erosion Control)</td>
<td>4-9</td>
</tr>
<tr>
<td>Seepage Control System</td>
<td>5</td>
</tr>
<tr>
<td>Integrated Facilities</td>
<td>6</td>
</tr>
</tbody>
</table>
Presentation Outline

- Engineering Investigations
- Proposed Facilities
 - Embankment Design
 - Erosion & Piping Protection
 - Seepage Control
 - Integrated Facilities
- Project Cost & Construction Schedule
- Risk Analysis
- Summary

Risk Analysis

- Objective
 - To evaluate the risk (probability and consequences of failure) of the existing levees and IDS Project embankments and integrated facilities under all loading events
 - To assess public risk and potential economic losses that may result if a failure occurs
Loading Events that could cause an Embankment Failure

- Flooding
 - Overtopping, piping / internal erosion
- Seismic
 - Foundation liquefaction, slope instability due to deformation & cracking
- Operational
 - Slope failure, piping / internal erosion, operational problems

Consequences of Embankment Failure

- Inward Breach
- Outward Breach
- Potential to Flood Neighboring Islands
Risk Analysis Findings

<table>
<thead>
<tr>
<th>Reservoir Island</th>
<th>Annual Failure Probability</th>
<th>Chance that 1 Person would become a Fatality During 50-Year Project Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rock Berm</td>
<td>Bench</td>
</tr>
<tr>
<td>Webb Tract</td>
<td>2.1%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Bacon Island</td>
<td>2.1%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

- Risk from existing levees is 2 to 8 times higher than the risk from re-engineered embankments at Webb Tract and Bacon Island

Summary

- The project design ensures public safety and project reliability
 - Safe embankment design recommended
 - Erosion & piping protection provided
 - Seepage control measures (on project embankments) established to prevent increased pumping costs and crop damage on adjacent islands
 - Integrated facilities provide flexibility in operations, improved operation and maintenance, and protection to fish
 - Overall risk lower than existing conditions
 - Cost of Project has been estimated
 - Project as designed is technically feasible
 - All work has been peer reviewed